Six-axis motion platforms have a low contraction height and a high degree of freedom. First of all, the designed six-axis crank arm platform, including the motor, reducer, crank arm, link, platform support arm, and upper and lower platforms, can be designed for different bearing requirements. Secondly, it uses a coordinate transform and kinematics theory to derive each motor rotor angle. A set of platform data acquisition (DAQ) monitoring modules was established, and the LabVIEW programming language was used to write measurement software. The monitoring items include displacement, speed, and acceleration, which can be displayed on the screen and recorded by an industrial computer in real time and dynamically. Then, an RS-485 or RS-232 communication transmission interface was used to provide the control system with the related movement information. Finally, an industrial computer combined with a motion control card was used as a control kernel to realize the control algorithms, internet module function, I/O write and read signals, firmware integration, and human–machine interface message. The experimental results validate the appropriateness of the proposed method.