2022
DOI: 10.1007/978-3-031-07689-3_28
|View full text |Cite
|
Sign up to set email alerts
|

Detecting Clickbait in Online Social Media: You Won’t Believe How We Did It

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
3
3

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 16 publications
0
1
0
1
Order By: Relevance
“…Penggunaan model Support Vector Machine dan Logistic Regression menghasilkan akurasi pada kisaran 78% -79% [5]. Penggunaan model machine learning lainnya seperti XGBoost (eXtreme Gradient Boosting) Classifier berhasil memperoleh akurasi sebesar 81,2% dalam pengklasifikasian judul clickbait dari media sosial Twitter [6]. Sedangkan pada penerapan deep learning penggunaan model LSTM berhasil memperoleh akurasi 97% dengan mengambil data dari judul-judul berita di platform Reddit [7].…”
Section: A Pendahuluanunclassified
“…Penggunaan model Support Vector Machine dan Logistic Regression menghasilkan akurasi pada kisaran 78% -79% [5]. Penggunaan model machine learning lainnya seperti XGBoost (eXtreme Gradient Boosting) Classifier berhasil memperoleh akurasi sebesar 81,2% dalam pengklasifikasian judul clickbait dari media sosial Twitter [6]. Sedangkan pada penerapan deep learning penggunaan model LSTM berhasil memperoleh akurasi 97% dengan mengambil data dari judul-judul berita di platform Reddit [7].…”
Section: A Pendahuluanunclassified
“…Clickbait refers to messages designed to entice readers to click on a link by evoking their emotions and interests. This kind of writing is typically employed for website advertising, however studies have shown that clickbait is a key source of falsified information transmission on social media [10]. Troll refers to a person who wants to manoeuvre people to change their opinions in a discussion or to make them angry by acting in a violent manner.…”
Section: A Misinformation In Osnsmentioning
confidence: 99%