A fiber reshaping-based refractive index (RI) sensor is proposed relying on both optical intensity variation and wavelength shift. The objective of this study is to completely reshape the core and to ultimately mimic a coreless fiber, thereby creating a highly efficient multimode interference (MMI) coupler. Thus, propagation modes are permitted to leak out into the cladding and eventually escape out of the fiber, depending on the surrounding environment. Two interrogation mechanisms based on both the intensity variation and wavelength shift are employed to investigate the performance of the RI sensor, with the assistance of leaky-mode and MMI theories. By monitoring the output intensity difference and the wavelength shift, the proposed RI sensor exhibits high average sensitivities of 185 dB/RIU and 3912 nm/RIU in a broad range from 1.339 to 1.443, respectively. The operating range and sensitivity can be adjusted by controlling the interaction length, which is appealing for a wide range of applications in industry and bioscience research.