2021
DOI: 10.1088/1755-1315/794/1/012094
|View full text |Cite
|
Sign up to set email alerts
|

Determine the clustering of cities in Indonesia for disaster management using K-Means by excel and RapidMiner

Abstract: The impact of disasters can disrupt people’s lives, both natural and non-natural, resulting in human casualties, environmental damage, property loss, and psychological impact. Besides that, disasters that occur can also cause damage to health facilities, worship, education, and damage to homes, both severely, moderately, and lightly. The impact of disasters is so large, so a logistics warehouse is needed to handle the disaster. One of the countries prone to disasters, Indonesia which has the fourth largest pop… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(6 citation statements)
references
References 0 publications
0
2
0
Order By: Relevance
“…Chu et al [16] integrated clustering methods and kernel density estimation for identify typhoon regions and center of each region. Oktarina and Junita [17] clustered regions of Indeonesia as for risk profiles according to a disaster data. The results can be considered for construction of logistic warehouses for disaster management.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Chu et al [16] integrated clustering methods and kernel density estimation for identify typhoon regions and center of each region. Oktarina and Junita [17] clustered regions of Indeonesia as for risk profiles according to a disaster data. The results can be considered for construction of logistic warehouses for disaster management.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Tal tarefa foi realizada com o uso de dados referentes aos tipos de desastres mais comuns na região, tais como registros de enchentes, deslizamentos e terremotos. Da maneira similar, o estudo apresentado em [8] agrupa áreas deste mesmo país (i.e., Indonésia), com o objetivo de classificá-las em graus de riscos previamente definidos: muito alto, alto, moderado, baixo e muito baixo. Por fim, em [1], os autores calculam o Roots Mean Square Deviation (RMSD) para determinar o valor ideal do número de grupos e assim utilizar o KMeans nos dados de desastres naturais coletados, com a finalidade de prever a ocorrência de novos desastres.…”
Section: Esforços Relacionadosunclassified
“…Já no backend do sistema, foi utilizado a linguagem de programação Python, versão 3.6. Aqui, vale destacar que exploramos os algoritmos de MD disponíveis na biblioteca scikit-learn 8 . No entanto, a metodologia empregada é genérica para acomodar qualquer outra estratégia de agrupamento de interesse.…”
Section: Terrainintelgisunclassified
“…Clustering research using Rapid Miner was researched by [21][22] [23]. The use of Rapid Miner in the process of creating clustering models is done Amanda [22]. Rapid Miner is used to implementing product analysis.…”
Section: Introductionmentioning
confidence: 99%