Femtosecond laser processes were optimized for nonlinear interactions with various optical materials to develop a novel biophotonic lab-on-a-chip device that integrates laser-formed waveguides (WGs), microfluidic channels and photonic crystals (PCs). Such integration seeks the unique demonstration of dual PC functionalities: (1) efficient chromatographic separation and filtration of analytes through a porous PC embedded inside a microfluidic channel and (2) optofluidic spectroscopy through embedded WGs that probe PC stopband shifts as varying analyte concentrations flow and separate. The building blocks together with their integration were demonstrated, providing embedded porous PCs through which electrochromatography drove an accelerated mobile phase of analyte and an optical stopband was probed via integrated buried WGs. Together, these laboratory results underpin the promise of simultaneous chromatographic and spectroscopic capabilities in a single PC optofluidic device.
©2013 Optical Society of America
References and links1. D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442(7101), 381-386 (2006). 2. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1(2), 106-114 (2007). 3. P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, "Photonic crystal resonator integrated in a microfluidic system," Opt. Lett. 33(14), 1623-1625 (2008). 4. V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, "Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel," Opt. Express 17(14), 11719-11729 (2009 1729-1731 (1996). 17. R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, "Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips," Laser Photon. Rev. 5(3), 442-463 (2011). 18. J. Bhawalkar, G. He, and P. Prasad, "Nonlinear multiphoton processes in organic and polymeric materials," Rep.Prog. Phys. 59(9), 1041-1070 (1996).