This Review summarizes recent research on vibrational predissociation (VP) of hydrogen-bonded clusters. Specifically, the focus is on breaking of hydrogen bonds following excitation of an intramolecular vibration of the cluster. VP of the water dimer and trimer, HCl clusters, and mixed HCl-water clusters are the major topics, but related work on hydrogen halide dimers and trimers, ammonia clusters, and mixed dimers with polyatomic units are reviewed for completion and comparison. The theoretical focus is on generating accurate potential energy surfaces (PESs) that can be used in detailed dynamical calculations, mainly using the quasiclassical trajectory approach. These PESs have to extend from the region describing large amplitude motion around the minimum to regions where fragments are formed. The experimental methodology exploits velocity map imaging to generate pair-correlated product translational energy distributions from which accurate bond dissociation energies of dimers and trimers and energy disposal in fragments are obtained. The excellent agreement between theory and experiment on bond dissociation energies, energy disposal in fragments, and the contributions of cooperativity demonstrates that it is now possible, with state-of-the-art experimental and theoretical methods, to make accurate predictions about dynamical and energetic properties of dissociating clusters.