The article is devoted to modification of the impact devices of Leeb hardness testers for the implementation of the dynamic instrumented indentation method. The results obtained made it possible to construct a load–displacement curve using primary EMF signals and made it possible to determine the values of the dissipated and elastic impact body energy, the maximal load of indentation, the maximal and residual penetration depth and the geometric parameters of the indentation region, namely the contact area of the indenter with the surface and the volume of the displaced material. The listed parameters of the indentation process allow us to measure the contact and volume hardness, the elastic modulus and the yield strength of test objects with portable hardness testers.