Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Introduction Repetitive exposure to blast overpressure waves can be a part of routine military and law enforcement training. However, our understanding of the effects of that repetitive exposure on human neurophysiology remains limited. To link an individual’s cumulative exposure with their neurophysiological effects, overpressure dosimetry needs to be concurrently collected with relevant physiological signals. Eye tracking has shown promise for providing insight into neurophysiological change because of neural injury, but video-based technology limits usage to a laboratory or clinic. In the present work, we show capability for using electrooculography-based eye tracking to enable physiological assessment in the field during activities involved repetitive blast exposures. Materials and Methods Overpressure dosimetry was accomplished by using a body-worn measurement system that captures continuous sound pressure levels as well as pressure waveforms of blast event in the range of 135-185 dB peak (0.1-36 kPa). Electrooculography eye tracking was performed using a commercial Shimmer Sensing system, which captured horizontal eye movements of both the left and right eyes, as well as vertical eye movements of the right eye, from which blinks can also be extracted. Data were collected during breaching activities that included repetitive use of explosives. Participants in the study were U.S. Army Special Operators and Federal Bureau of Investigations special agents. Approval for research was received by the Massachucetts Institute of Technology Committee on the Use of Humans as Experimental Subjects, the Air Force Human Research Protections Office, and the Federal Bureau of Investigations Institutional Review Board. Results The energy from overpressure events was accumulated and summarized into an 8-hour equivalent of sound pressure level (i.e., LZeq8hr). The total exposure in a single day, i.e., the LZeq8hr, ranged from 110 to 160 dB. Oculomotor features, such as blink and saccade rate, as well as variance in blink waveforms, show changes across the period of overpressure exposure. However, the features that showed significant change across the population were not necessarily the ones that showed significant correlation with the levels of overpressure exposure. A regression model built to predict overpressure levels from oculomotor features alone showed a significant association (R = 0.51, P < .01). Investigation of the model indicates that changes in the saccade rate and blink waveforms are driving the relationship. Conclusions This study successfully demonstrated that eye tracking can be performed during training activities, such as explosive breaching, and that the modality may provide insight into neurophysiological change across periods of overpressure exposure. The results presented herein show that electrooculography-based eye tracking may be a useful method of assessing individualized physiological effects of overpressure exposure in the field. Future work is focused on time-dependent modeling to assess continuous changes in eye movements as this will enable building dose–response curves.
Introduction Repetitive exposure to blast overpressure waves can be a part of routine military and law enforcement training. However, our understanding of the effects of that repetitive exposure on human neurophysiology remains limited. To link an individual’s cumulative exposure with their neurophysiological effects, overpressure dosimetry needs to be concurrently collected with relevant physiological signals. Eye tracking has shown promise for providing insight into neurophysiological change because of neural injury, but video-based technology limits usage to a laboratory or clinic. In the present work, we show capability for using electrooculography-based eye tracking to enable physiological assessment in the field during activities involved repetitive blast exposures. Materials and Methods Overpressure dosimetry was accomplished by using a body-worn measurement system that captures continuous sound pressure levels as well as pressure waveforms of blast event in the range of 135-185 dB peak (0.1-36 kPa). Electrooculography eye tracking was performed using a commercial Shimmer Sensing system, which captured horizontal eye movements of both the left and right eyes, as well as vertical eye movements of the right eye, from which blinks can also be extracted. Data were collected during breaching activities that included repetitive use of explosives. Participants in the study were U.S. Army Special Operators and Federal Bureau of Investigations special agents. Approval for research was received by the Massachucetts Institute of Technology Committee on the Use of Humans as Experimental Subjects, the Air Force Human Research Protections Office, and the Federal Bureau of Investigations Institutional Review Board. Results The energy from overpressure events was accumulated and summarized into an 8-hour equivalent of sound pressure level (i.e., LZeq8hr). The total exposure in a single day, i.e., the LZeq8hr, ranged from 110 to 160 dB. Oculomotor features, such as blink and saccade rate, as well as variance in blink waveforms, show changes across the period of overpressure exposure. However, the features that showed significant change across the population were not necessarily the ones that showed significant correlation with the levels of overpressure exposure. A regression model built to predict overpressure levels from oculomotor features alone showed a significant association (R = 0.51, P < .01). Investigation of the model indicates that changes in the saccade rate and blink waveforms are driving the relationship. Conclusions This study successfully demonstrated that eye tracking can be performed during training activities, such as explosive breaching, and that the modality may provide insight into neurophysiological change across periods of overpressure exposure. The results presented herein show that electrooculography-based eye tracking may be a useful method of assessing individualized physiological effects of overpressure exposure in the field. Future work is focused on time-dependent modeling to assess continuous changes in eye movements as this will enable building dose–response curves.
A series of articles discussing advanced diagnostics that can be used to assess noise injury and associated noise-induced hearing disorders (NIHD) was developed under the umbrella of the United States Department of Defense Hearing Center of Excellence Pharmaceutical Interventions for Hearing Loss working group. The overarching goals of the current series were to provide insight into (1) well-established and more recently developed metrics that are sensitive for detection of cochlear pathology or diagnosis of NIHD, and (2) the tools that are available for characterizing individual noise hazard as personal exposure will vary based on distance to the sound source and placement of hearing protection devices. In addition to discussing the utility of advanced diagnostics in patient care settings, the current articles discuss the selection of outcomes and end points that can be considered for use in clinical trials investigating hearing loss prevention and hearing rehabilitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.