If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.
About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.
AbstractPurpose -This paper aims to discuss the general principles behind the microwave sensing and demonstrates the potential of cavity microwave resonator device in real-time monitoring for: environmental monitoring with the focus on wastewater pollution, a system for oil/gas/water content evaluation in a dynamic pipeline, a system for real-time determination of bacteria concentration and a method for non-invasive glucose determination. Design/methodology/approach -Microwave sensing is a rapidly developing technology which has been successfully used for various industrial applications including water level measurements, material moisture content, in construction industry for non-invasive evaluation of structures and even in the healthcare industry for non-invasive real-time monitoring of glucose in diabetic patients. Novel microwave cavities designed and tested for specific applications are presented. Findings -The paper provides experimental results of testing the novel microwave sensing systems in a range of industrial and healthcare applications and discusses the potential of these systems for real-time monitoring of processes and parameters.Research limitations/implications -The concept of real-time microwave sensing was successfully tested, but further experiments are required to account for possible interference mechanisms before it can be used commercially on a large-scale. Practical implications -It is suggested that a novel approach to wastewater monitoring, namely using specially designed microwave cavity sensors, could lead to a successful development of an advanced platform capable of providing for a real-time detection of water content with superior sensitivity. Also, a system for real-time multiphase fluid composition monitoring is reported, which is essential for sustainable oil industry operation. Originality/value -The paper illustrated the potential of microwave sensing as a real-time monitoring platform for a broad spectrum of commercial applications, with a focus on system developed by the authors, namely, for the monitoring of a multiphase fluid flow in a dynamic oil pipeline, for realtime monitoring of nutrients concentration in wastewater and for healthcare ind...