One of the main challenges in the adoption of artificial intelligence-based tools, such as integrated decision support systems, is the complexities of their application. This study aimed to define the relevant parameters that can be used as indicators for real-time detection of heat stress and subclinical mastitis in dairy cows. Moreover, this study aimed to demonstrate the use of a developed data-mining hub as an artificial intelligence-based tool that integrates the defined relevant information (parameters or traits) in accurately identifying the condition of the cow. A comprehensive theoretical framework of the data-mining hub is demonstrated, the selection of the parameters that were used for the data-mining hub is listed, and the relevance of the traits is discussed. The practical application of the data-mining hub has shown that using 21 parameters instead of 13 and 8 parameters resulted in a high overall accuracy of detecting heat stress and subclinical mastitis in dairy cows with a high precision effect reflecting a low percentage of misclassifying the conditions of the dairy cows. This study has developed an innovative approach in which combined information from different independent data was used to accurately detect the health and wellness status of the dairy cows. It can also be implied that an artificial intelligence-based tool such as the proposed theoretical data-mining hub of dairy cows could maximize the use of continuously generated and underutilized data in farms, thus ultimately simplifying repetitive and difficult decision-making tasks in dairy farming.