In this paper, a novel tree climbing robot mechanism was designed, based on the tree climbing movement and posture of the primates. The overall design and tree climbing gait of the tree climbing robot were analyzed in detail. According to the screw theory, the DOF of the leg of the tree climbing robot is calculated. The forward and inverse kinematics equations of the tree climbing robot were established and solved. The kinematics of the leg parallel mechanism was established, furthermore, the singularity of the leg mechanism was analyzed and three types of singularity were derived. The simplified diagrams and the corresponding model diagrams, at the singular points, were drawn. Finally, the movement is simulated and analyzed. And the changes of the leg joint angular and the foot-end displacement and the relationship between the driving displacement and angles of the tree climbing robot by numerical simulation is obtained at the same time. Prototype physical model of the tree climbing robot was made, which further verified the rationality and feasibility of the tree climbing robot mechanism studied in this paper.