Biocidal coatings that are based on quaternized ammonium copolymers were developed after blending and crosslinking and studied as a function of the ratio of reactive groups and the type of biocidal groups, after curing at room temperature or 120 • C. For this purpose, two series of copolymers with complementary reactive groups, poly(4-vinylbenzyl chloride-co-acrylic acid), P(VBC-co-AAx), and poly(sodium 4-styrenesulfonate-co-glycidyl methacrylate), P(SSNa-co-GMAx), were synthesized via free radical copolymerization and further modified resulting in covalently bound (4-vinylbenzyl dimethylhexadecylammonium chloride, VBCHAM) and electrostatically attached (hexadecyltrimethylammonium 4-styrene sulfonate, SSAmC 16) units. The crosslinking reaction between the carboxylic group of acrylic acid (AA) and the epoxide group of glycidyl methacrylate (GMA) of these copolymers led to the stabilization of the coatings through reactive blending. The so developed coatings were cured at room temperature and 120 • C, and then immersed in ultra-pure water and aqueous NaCl solutions at various concentrations for a time period up to three months. Visual inspection of the integrity of the materials coated onto glass slides, gravimetry, scanning electron microscopy (SEM) characterization, as well as the determination of total organic carbon (TOC) and total nitrogen (TN) of the solutions, were used to investigate the parameters affecting the release of the materials from the coatings based on these systems. The results revealed that curing temperature, complementary reactive groups' content, and type of antimicrobial species control the release levels and the nature of releasable species of these environmentally-friendly antimicrobial coatings.