A method of adaptive control of military radio network parameters has been developed. This method allows predicting suppressed frequencies by electronic warfare devices, determining the topology of the military radio network. Also, this method allows determining rational routes of information transmission and operating mode of radio communications. Forecasting of the electronic environment is characterized by recirculation of input data for one count, resampling on a logarithmic time scale, finding a forecast for the maximum value of entropy and resampling the forecast on the exponential time scale. The developed method allows choosing a rational network topology. The choice of topology of the military radio communication system is based on the method of ant multi-colony system. The main idea of the new option of ant colony optimization is that instead of one colony of the traditional ant algorithm several colonies are used that work together in a common search space. However, this procedure additionally takes into account the type of a priori uncertainty and the evaporation coefficient of the pheromone level. The proposed method allows choosing a rational route for information transmission. The proposed procedure is based on an improved DSR algorithm. This method uses several operating modes of radio communications, namely the technology of multi-antenna systems with noise-like signals, with pseudo-random adjustment of the operating frequency and with orthogonal frequency multiplexing. The developed method provides a gain of 10‒16 % compared to conventional management approaches