2019
DOI: 10.15587/2312-8372.2019.188743
|View full text |Cite
|
Sign up to set email alerts
|

Development of the method of forecasting the atmospheric air pollution parameters based on error correction by neural-like structures of the model of successive geometric transformations

Abstract: У роботі описано важливість удосконалення існуючих та дослідження нових алгоритмів прогнозування параметрів забруднення навколишнього середовища для поліпшення якості моніторингу навколишнього середовища. Оскільки організація та управління виробництвом вимагають розробки нових підходів до проблеми контролю та управління промисловими джерелами викидів шкідливих речовин на основі нових інформаційних технологій. Одним із найбільш проблемних місць систем контролю та управління якістю повітря на виробництві є розро… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(3 citation statements)
references
References 18 publications
0
3
0
Order By: Relevance
“…The latter confirms the existence of the function of output signals and depends on a variety of system states and input signals -parameters of the patient's state. As in other monitoring devices, data gaps still remain a significant problem [18]. In [18], algorithms for eliminating gaps are presented and investigated.…”
Section: Literature Review and Problem Statementmentioning
confidence: 99%
See 1 more Smart Citation
“…The latter confirms the existence of the function of output signals and depends on a variety of system states and input signals -parameters of the patient's state. As in other monitoring devices, data gaps still remain a significant problem [18]. In [18], algorithms for eliminating gaps are presented and investigated.…”
Section: Literature Review and Problem Statementmentioning
confidence: 99%
“…As in other monitoring devices, data gaps still remain a significant problem [18]. In [18], algorithms for eliminating gaps are presented and investigated. However, the proposed methods do not exclude an error, and the method of accelerating the process of data loss recovery, proposed [19], concerns only one parameter and does not apply to multiparameter time series.…”
Section: Literature Review and Problem Statementmentioning
confidence: 99%
“…Ref. [13] proposes a method for predicting atmospheric air pollution based on neural networks or also the case of [14] using a similar method for fruit detection and classification.…”
Section: Introductionmentioning
confidence: 99%