The intestinal epithelium forms a barrier protecting the organism from microbes and other proinflammatory stimuli. The integrity of this barrier and the proper response to infection requires precise regulation of powerful immune homing signals such as tumor necrosis factor (TNF). Dysregulation of TNF leads to inflammatory bowel diseases (IBD), but the mechanism controlling the expression of this potent cytokine and the events that trigger the onset of chronic inflammation are unknown. Here, we show that loss of function of the epigenetic regulator ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1) in zebrafish leads to a reduction in tnfa promoter methylation and the induction of tnfa expression in intestinal epithelial cells (IECs). The increase in IEC tnfa levels is microbe-dependent and results in IEC shedding and apoptosis, immune cell recruitment, and barrier dysfunction, consistent with chronic inflammation. Importantly, tnfa knockdown in uhrf1 mutants restores IEC morphology, reduces cell shedding, and improves barrier function. We propose that loss of epigenetic repression and TNF induction in the intestinal epithelium can lead to IBD onset.inflammation | Uhrf1 | DNA methylation | tumor necrosis factor | zebrafish I ntestinal epithelial cells (IECs) function as a barrier to prevent luminal contents from accessing underlying tissues, and loss of barrier function is a crucial factor leading to the development of inflammatory bowel diseases (IBD) (1). IBD, including Crohn's disease and ulcerative colitis, are intestinal disorders of poorly understood origin thought to arise from genetic susceptibility, luminal microbiota, immune responses, and environmental factors (2-4). A key element in IBD onset is the up-regulation of the proinflammatory cytokine tumor necrosis factor (TNF) by various cell types including immune cells and IECs. TNF overexpression has been detected in the Paneth cells within the epithelium of human IBD patients (5), and anti-TNF treatments are used successfully to treat patients with Crohn's disease (6). Previous research in mice has demonstrated that intestinal TNF exposure leads to loss of barrier function (7), and overexpression of TNF in mouse IECs is sufficient to elicit an IBD phenotype (8). Despite its pathogenic relevance, the genetic mechanisms regulating TNF expression and IBD onset remain largely unknown.Genome-wide association studies have identified numerous susceptibility loci associated with IBD including ubiquitin-like protein containing PHD and RING finger domains 1 (UHRF1) and the DNA methyltransferases DNMT1 and DNMT3a (9, 10), which are genes involved in DNA methylation controlling epigenetic transcriptional repression. Moreover, low concordance rates have been observed in monozygotic twin studies (3), leading to the hypothesis that epigenetic regulation also contributes to IBD pathogenesis. Changes in DNA and histone modifications associated with epigenetic regulation have been detected in IBD patients (3, 4, 9, 11, 12), but direct links to the I...