Abstract W2NCl7 has been prepared by the reaction of tungsten pentachloride with the bromide of Millon's base, [Hg2N]Br, in boiling CCl4. The product forms a dark brown, moisture sensitive crystal powder (μeff = 0.7 B.M. at 21 °C). With phosphoryl chloride, the complex W2NCl7·2 POCl3 is formed. The reaction with chlorine leads to the mixed-valenced W(V)/W(VI) complex W2NCl8 (μeff = 0.5 B.M. at 22 °C), which reacts with tetraphenylphosphonium chloride in CH2Cl2 to form (PPh4)2[W2NCl10] ·2CH2Cl2. The reactions of W2NCl7 with PPh4Cl in molar ratios in CH2Cl2 solution lead to several complexes; one of them was identified bv X-ray diffraction methods to be (PPh4)2[W3Cl9(μ3-N)(0)(μ2-NCl)]2 ·1,5 CH2Cl2, which forms black crystals. The compound crystallizes monoclinically in the space group P21/n with two formula units per unit cell (7318 observed, independent reflexions, R = 0.083). The lattice dimensions are (20 °C): a = 994.4; b = 2673; c = 1518.2 pm; β = 101.00°. The compound consists of PPh4⊕ cations and centrosymmetric anions [W3Cl9(μ3-N)(O)(μ2-NCl)]22⊕. The tungsten atoms form a scalene triangle with WW bond lengths of 282 and 278 pm, respectively. The hypothenuse of this triangle is a nearly linear W - N -W bridge with WN distances of 199 and 182 pm. One of the WW edges is bridged by a μ-NCI group with WN bond lengths of 196 und 189 pm. respectively.