Background and Aims
Abiotic and biotic components of the environment both limit plant reproduction, but how they interact with one another in combination is less understood. Understanding these interactions is especially relevant because abiotic and biotic environmental components respond differently to various drivers of global change. Here, we aim to understand whether the effects of pollination (biotic component) on plant reproduction depend on soil moisture (abiotic component), two factors known to affect plant reproduction and that are changing with global change.
Methods
We conducted pollen supplementation experiments for two plant species, Delphinium nuttallianum and Hydrophyllum fendleri, in subalpine meadows in the Western USA across 4 years that varied in soil moisture. In a separate 1-year field experiment, we crossed water addition with pollen supplementation factorially. We measured the proportion of fruit set, seeds per fruit and seeds per plant, in addition to stomatal conductance, to determine whether plant physiology responded to watering.
Key Results
In the 4-year study, only H. fendleri reproduction was pollen limited, and this occurred independently of soil moisture. Experimental water addition significantly increased soil moisture and stomatal conductance for both species. The effect of pollen addition on reproduction depended on the watering treatment only for H. fendleri fruit production. Reproduction in D. nuttallianum was not significantly affected by pollen addition or water addition, but it did respond to interannual variation in soil moisture.
Conclusions
Although we found some evidence for the effect of a biotic interaction depending on abiotic conditions, it was only for one aspect of reproduction in one species, and it was in an unexpected direction. Our work highlights interactions between the abiotic and biotic components of the environment as an area of further research for improving our understanding of how plant reproduction responds to global change.