In this study, we investigate the electrical and noise performances of accumulation-mode n- and p-MOSFETs on Si(110) wafers and compare them with conventional MOSFETs fabricated either on Si(100) or Si(110) wafers. With regard to electrical performances, accumulation-mode p-type MOSFETs are in every aspect superior. However, its n-type counterpart does not provide the best performances even though they are still superior to conventional transistors when fabricated on the same type of wafer. Conventional inversion-mode n-MOSFETs on Si(100) wafers still display the best performances. The simultaneous improvement and reduction in drivability respectively in the p- and n-type transistors make the accumulation-mode MOSFETs fabricated on Si(110) wafers extremely well suited for complementary technologies owing to their great balance in terms of drivability. With regard to noise evaluation, accumulation-mode MOSFETs on Si(110) wafers exhibit the highest noise level even though they compare relatively well with the inversion transistors on Si(110) wafers, especially for p-type ones. The lowest noise level is obtained for conventional inversion-mode MOSFETs on Si(100) wafers, and the type of wafer upon which transistors are fabricated is the reason. Indeed, the fabrication of high-quality Si/SiO2 interfaces is better achieved for silicon wafers with a (100) crystallographic orientation, leading to few interface defects and consequently less noise.