In primary cultures, much evidence shows the existence of different subtypes of astrocytes that are not all identified. One methodology for studying these subtypes can be their cloning. The present investigation shows a method for a direct cloning of astrocytes without previous immortalization. Astrocytes from the cerebral cortex of newborn rats were cultured, purified by shaking, and harvested by trypsinization. One single astrocyte was plated in a small volume of a homemade cloning medium. After getting a colony, successive platings were made using larger and larger vessels, up to 60-mm-diameter petri dishes. Then, subcultures were made. The yield of the cloning was similar to that of common eukaryotic cell clonings. All along the cloning procedure, the cells were positively immunostained with anti-glial fibrillary acidic protein antibodies. Cloned cells from some batches were spindle-shaped, looking like fibroblasts. Nevertheless, they were immunostained with anti-glial fibrillary acidic protein antibodies, unlike true fibroblasts. These spindle-shaped astrocytes were compared to cells from an astrocytoma cell line that had the same shape. The growth pattern of the astrocytoma cells was different from that of the astrocytes cloned from the primary cultures. All the types of studied cells contained glycogen. On the basis of the criteria of morphology, of glial fibrillary acidic protein immunolabeling, and of glycogen synthesis, the cloned cells kept the characteristics of astrocytes. This study shows that it is perfectly possible to get clones of astrocytes from one astrocyte without previous immortalization, giving thus a convenient material for the study of astrocyte biology.