Dentin matrix metalloproteinases (MMPs) are involved in collagen degradation of resin-dentin interfaces. This study evaluated if collagen degradation can be prevented by chlorhexidine after different dentin demineralization procedures. Human dentin demineralization was performed with phosphoric acid (PA), EDTA, or acidic monomers (ClearfilSEBond and XENOV). Specimens were stored (24 h, 1 wk or 3 wk) in the presence or absence of chlorhexidine. In half of the groups, active MMP-2 was incorporated into the storing solution. C-terminal telopeptide determination (ICTP) was performed in the supernatants. Collagen degradation was higher in PA and EDTA-demineralized dentin. Chlorhexidine reduced collagen degradation in these groups only for 24 h. When dentin was demineralized with SEBond or Xeno, collagen degradation was reduced up to 30%, but addition of exogenous MMP-2 significantly increased collagen degradation. In self-etchant treated dentin the inhibitory effect of chlorhexidine on MMPs lasted up to 3 wk. Treating dentin with EDTA, PA or self-etching agents produces enough demineralization to permit cleavage of the exposed collagen. Monomers infiltration may exert protection on demineralized collagen, probably through immobilization of MMPs. The partial inhibitory action of CHX on MMP activity produced by self-etching adhesives was prolonged compared to the short-acting in PA or EDTA-treated dentin.