Work on HgCdTe began at Texas Instruments in the early 1960s, and continued through 1997 when TI's defense business was sold first to Raytheon, and subsequently in 1998 to DRS Technologies. This presentation traces the history of HgCdTe's evolution throughout this timeframe to the present day, as viewed through the eyes of the author and several of his TI contemporaries who have survived the experience. The materials technology will be traced from the early days of bulk growth by the solid state recrystalization technique, through the traveling heater method of growth, to liquid phase epitaxy from large Te-rich melts, to vapor phase growth by molecular beam epitaxy and metal organic chemical vapor deposition. The evolution of detector device architectures at TI over the years will be discussed, from the early, successful days of photoconductors and the Common Module System, through the somewhat problematic and relatively unsuccessful foray into charge coupled and charge injection devices for 2 nd generation FPAs for the Javelin program, to the outstandingly successful development of the vertically integrated photodiode (VIP) and high density VIP FPA architectures for monocolor and multi-color 3 rd generation systems. The versatile, and unique nature of this infrared semiconductor materials system will be highlighted by reference to current work at DRS Technologies into electron avalanche photodiodes (EAPDs), for use in active/passive IR systems, and high operating temperature (HOT) detectors, which threaten to eventually offer BLIP photon detection at uncooled operating temperatures, over the whole IR spectrum from 1 to 12um.