Thermal rate coefficients for the removal (reaction + quenching) of O2(1sigma(g)+) by collision with several atmospheric molecules were determined to be as follows: O3, k3(210-370 K) = (3.63 +/- 0.86) x 10(-11) exp((-115 +/- 66)/T); H2O, k4(250-370 K) = (4.52 +/- 2.14) x 10(-12) exp((89 +/- 210)/T); N2, k5(210-370 K) = (2.03 +/- 0.30) x 10(-15) exp((37 +/- 40)/T); CO2, k6(298 K) = (3.39 +/- 0.36) x 10(-13); CH4, k7(298 K) = (1.08 +/- 0.11) x 10(-13); CO, k8(298 K) = (3.74 +/- 0.87) x 10(-15); all units in cm3 molecule(-1) s(-1). O2(1sigma(g)+) was produced by directly exciting ground-state O2(3sigma(g)-) with a 762 nm pulsed dye laser. The reaction of O2(1sigma(g)+) with O3 was used to produce O(3P), and temporal profiles of O(3P) were measured using VUV atomic resonance fluorescence in the presence of the reactant to determine the rate coefficients for removal of O2(1sigma(g)+). Our results are compared with previous values, where available, and the overall trend in the O2(1sigma(g)+) removal rate coefficients and the atmospheric implications of these rate coefficients are discussed. Additionally, an upper limit for the branching ratio of O2(1sigma(g)+) + CO to give O(3P) + CO2 was determined to be < or = 0.2% and this reaction channel is shown to be of negligible importance in the atmosphere.