Hybrid solar cells based on conjugated polymers and inorganic semiconducting nanoparticles combine beneficial properties of organic and inorganic semiconductors and are, therefore, an exciting alternative to pure organic or inorganic solar cell technologies. Several approaches for the fabrication of hybrid solar cells are already elaborated and explored. In the last years routes have emerged, where the nanoparticles are prepared directly in the matrix of the conjugated polymer. Here, the conjugated polymer prevents the nanoparticles from excessive growth and thereby makes additional capping agents obsolete. This review focuses on in situ preparation methods of inorganic semiconducting nanoparticles in conjugated polymers in view of applications in hybrid solar cells. The details, advantages and disadvantages of the different in situ methods are critically examined and put in comparison to the classical route where pre-synthesized nanoparticles are used. Various key factors influencing the solar cell performance as well as future strategies for increasing the overall efficiency of hybrid solar cells prepared via in situ routes are discussed.
KeywordsInorganic-organic hybrid solar cell • Nanocomposite • OPV