Robustness against Electronic Warfare/Electronic Defence attacks represents an important advantage of Noise Radar Technology (NRT). An evaluation of the related Low Probability of Detection (LPD) and of Intercept (LPI) is presented for Continuous Emission Noise Radar (CE‐NR) waveforms with different operational parameters, that is, “tailored”, and with various “degrees of randomness”. In this frame, three different noise radar waveforms, a phase Noise (APCN) and two “tailored” noise waveforms (FMeth and COSPAR), are compared by time–frequency analysis. Using a correlator (i.e. a two antennas) receiver, assuming a complete knowledge of the band (B) and duration (T) of the coherent emission of these waveforms, it will be shown that the LPD features of a CE‐NR do not significantly differ from those of any CE radar transmitting deterministic waveforms. However, in real operations, B and T are unknown; hence, assuming an instantaneous bandwidth estimation will show that the duration T can be estimated only for some specific “tailored” waveforms (of course, not to be operationally used). The effect of “tailoring” is analysed with prospects for future work. Finally, some limitations in the classification of these radar signals are analysed.