Stomata are small pores on the surface of land plants that facilitate gas exchange-acquiring CO 2 from surrounding atmosphere and releasing water vapor. In adverse conditions, such as drought, stomata close to minimize water loss. The activities of stomata are vital for plant growth and survival. In the last two decades, key players for stomatal development have been discovered thanks to the model plant Arabidopsis thaliana. Our knowledge about the formation of stomata and their response to environmental changes are accumulating. In this review, we summarize the genetic and molecular mechanisms of stomatal development, with specific emphasis on recent findings and potential applications toward enhancing the sustainability of agriculture.