Background: The precise mechanisms underlying pathogenesis of different subtypes of chronic rhinosinusitis with nasal polyps (CRSwNP) are still unclear.Emerging evidence indicates that microRNAs may play a role in the pathogenesis of CRSwNP. This study aimed to identify the dysregulated microRNA-messenger RNA (miRNA-mRNA) regulatory networks in eosinophilic (E) and noneosinophilic (non-E) CRSwNP. Methods: Whole-transcriptome sequencing was performed on nasal tissues of patients with ECRSwNP and non-ECRSwNP, and control subjects. An integrated analysis of miRNA and mRNA expression was conducted to identify key mRNAs and miRNAs involved in the pathogenesis of ECRSwNP and non-ECRSwNP. The miRNAs of interest and their target genes were validated using quantitative realtime polymerase chain reaction (PCR). Results: A group of differentially expressed mRNAs (DE-mRNAs) and miR-NAs (DE-miRs) were identified in ECRSwNP patients vs control subjects, non-ECRSwNP patients vs control subjects, and non-ECRSwNP vs ECRSwNP patients, respectively. Pathway enrichment analysis showed distinct immune and inflammatory functions associated with DE-mRNAs and target genes of DE-miRs in ECRSwNP vs control and non-ECRSwNP vs control groups. The miRNA-mRNA regulatory networks constructed with Cytoscape highlighted the roles of miR-154, miR-221, and miR-223 family miRNAs relating to both ECRSwNP and non-ECRSwNP, and the roles of the let-7 and miR-34/449 families in the development of non-ECRSwNP. Assessment using real-time PCR for the expression of miRNAs and target genes demonstrated highly consistent data with the RNA sequencing data. Conclusion: ECRSwNP and non-ECRSwNP patients express distinct miRNA-mRNA regulatory networks compared with control subjects, thus providing