This study confirms the first case of a grass weed featuring broad-spectrum resistance to ALS-inhibiting herbicides due to a Pro-197-Tyr mutation in the ALS gene. Fenoxaprop-P-ethyl and mesosulfuron-methyl resistances in AHTC-06 plants were conferred by target site mutations and P450s-based metabolism. © 2018 Society of Chemical Industry.
Background: Patients with chronic rhinosinusitis with nasal polyps (CRSwNP) and comorbid asthma have more severe disease and are difficult to treat. However, the molecular endotypes associated with CRSwNP with comorbid asthma (CRSwNP + AS) are not clear. This study aimed to investigate the characteristics of type 2 inflammation and the molecular signatures associated with CRSwNP + AS. Methods: A total of 195 subjects; including 65 CRSwNP + AS patients, 99 CRSwNP-alone patients, and 31 healthy control subjects; were enrolled in the study. Nasal tissues from patients with CRSwNP + AS, CRSwNP-alone and control subjects were assessed for infiltration of inflammatory cells and concentrations of total IgE. Whole-transcriptome sequencing was performed and differentially expressed (DE) mRNAs and long non-coding RNAs (lncRNAs) and their associated pathways were analyzed. The correlations between type 2 cytokines and local eosinophils, tissue IgE, and transcriptome signatures were evaluated. Results: Significantly higher local eosinophil infiltration and higher levels of total IgE were found in nasal tissues from CRSwNP + AS patients than in nasal tissues from CRSwNP-alone patients. Furthermore, atopy and recurrence were significantly more frequent in patients with CRSwNP + AS than in patients with CRSwNP-alone (62.5% vs 28.6% and 66.7% vs 26.9%, respectively). RNA sequencing analysis identified 1988 common DE-mRNAs, and 176 common DE-lncRNAs shared by CRSwNP + AS versus control and CRSwNP-alone versus control. Weighted gene coexpression network analysis (WGCNA) identified LINC01146 as hub lncRNA dysregulated in both subtypes of CRSwNP. Overall, 968 DE-mRNAs and 312 DE-lncRNAs were identified between CRSwNP + AS and CRSwNP-alone. Both pathway enrichment analysis and WGCNA indicated that the phenotypic traits of CRSwNP + AS were mainly associated with higher activities of arachidonic acid metabolism, type 2 cytokines related pathway and fibrinolysis pathway, and lower activity of IL-17 signalling pathway. Furthermore, the expression of type 2 cytokines; IL5 and IL13, was positively correlated with local eosinophil infiltration, tissue IgE level, and the expression of DE-mRNAs that related to arachidonic acid metabolism. Moreover, WGCNA identified HK3-006 as hub lncRNA in yellow module that most positively correlated with phenotypic traits of CRSwNP + AS.
BACKGROUND Asia minor bluegrass (Polypogon fugax Nees ex Steud.) is an invasive grass species severely infesting wheat and canola fields in China. In May 2017, a suspected resistant P. fugax population AHHY that survived fenoxaprop‐P‐ethyl applied at its field‐recommended rate was collected from a wheat field in Huaiyuan County, Anhui Province, China. This study aimed to determine the resistance profile of AHHY to acetyl‐CoA carboxylase (ACCase) inhibitors and to investigate its mechanisms of resistance to fenoxaprop. RESULTS Single‐dose testing indicated that the AHHY population had evolved resistance to fenoxaprop. The partial carboxyltransferase domain of ACCase in P. fugax was amplified and compared. Four loci encoding plastidic ACCase were isolated from both the resistant and sensitive individuals. Combining gene sequencing with the derived cleaved amplified polymorphic sequence assay, we found that 100% of the plants of AHHY carried Trp‐1999‐Ser mutation in their ACCase1,1–2 allele. Whole‐plant dose–response bioassay indicated that AHHY was highly resistant to fenoxaprop and pinoxaden (resistance index (RI) ≥ 10) with low resistance to clodinafop‐propargyl, sethoxydim, and clethodim (2 ≤ RI < 5). Pre‐treatment with piperonyl butoxide largely reduced (55%) the weed's resistance to fenoxaprop. Both basal and fenoxaprop‐induced glutathione S‐transferases activities toward 1‐chloro‐2, 4‐dinitrobenzene were significantly higher in resistant plants than in susceptible plants. CONCLUSION This study revealed that P. fugax had multiple alleles encoding plastidic ACCase, and reported for the first time the occurrence of Trp‐1999‐Ser mutation and non‐target‐site resistance in this species. Fenoxaprop resistance in AHHY plants was conferred by target‐site mutation and P450s‐involved enhanced metabolism. © 2019 Society of Chemical Industry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.