2020
DOI: 10.4103/ijph.ijph_502_20
|View full text |Cite
|
Sign up to set email alerts
|

Distribution and growth rate of COVID-19 outbreak in Tamil Nadu: A log-linear regression approach

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
7
1
3

Year Published

2020
2020
2023
2023

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 12 publications
(11 citation statements)
references
References 1 publication
0
7
1
3
Order By: Relevance
“…The subsequent reduction toward the end of April can be attributed to aggressive testing, contact tracing, and isolation measures implemented in the urban area of Jodhpur during that month. Our R 0 estimate for the first month (1.61) was slightly higher than the national estimate of 1.47 and lower than the estimate from the state of Tamil Nadu (1.88) in India during the same period of March to April 2020 [ 9 , 13 ]. District level R 0 estimates are more likely to show pronounced fluctuations than state or national estimates, as the latter are aggregated across a wide range of epidemiological settings.…”
Section: Discussioncontrasting
confidence: 75%
See 1 more Smart Citation
“…The subsequent reduction toward the end of April can be attributed to aggressive testing, contact tracing, and isolation measures implemented in the urban area of Jodhpur during that month. Our R 0 estimate for the first month (1.61) was slightly higher than the national estimate of 1.47 and lower than the estimate from the state of Tamil Nadu (1.88) in India during the same period of March to April 2020 [ 9 , 13 ]. District level R 0 estimates are more likely to show pronounced fluctuations than state or national estimates, as the latter are aggregated across a wide range of epidemiological settings.…”
Section: Discussioncontrasting
confidence: 75%
“…Current mathematical modeling approaches for epidemiological understanding of COVID-19 in India are based on aggregate data reported at the national and state levels [ 7 - 13 ]. Very often, conclusions based on large-scale data are not appropriate for designing interventions at the local level.…”
Section: Introductionmentioning
confidence: 99%
“…A medida que el SARS-CoV-2 (COVID-19) se propaga en México se van conociendo más características de su dinámica de contagios entre las entidades federativas. La determinación del patrón de infecciones en el espacio y tiempo ayuda a entender cómo ocurre la propagación y la forma en que se transmite en medio de las acciones de control establecidas por los sistemas de vigilancia epidemiológica y, en consecuencia, auxilia a redefinir las estrategias de intervención para disminuir el impacto en la salud de las poblaciones (Bhaskar et al, 2020;Cuartas et al, 2020;Medeiros et al, 2020;Parr, 2020). Este texto tiene como objetivo analizar el patrón espacio-temporal de propagación del COVID-19 en los municipios de la entidad fronteriza de Baja California entre la semana epidemiológica 10 y la 31 por medio de la utilización de las metodologías de Dinámica de Sistemas (sd, por sus siglas en inglés) y Sistemas de Información Geográfica (sig).…”
Section: Introductionunclassified
“…Agent based models have provided useful insights, at the level of full cities, into mitigation methods and the effectiveness of non-pharmaceutical interventions [12]. Related references which model COVID-19 in India are [10,[13][14][15][16][17][18][19][20][21][22][23][23][24][25][26][27][28][29][30][31][32][33][34][35][36]. These models are very largely compartmental models of varying degrees of complexity [37].…”
Section: Introductionmentioning
confidence: 99%