Over the last 20 years, researchers in the field of digital plant pathology have chased the goal to implement sensors, machine learning and new technologies into knowledge-based methods for plant phenotyping and plant protection. However, the application of swiftly developing technologies has posed many challenges. Greenhouse and field applications are complex and differ in their study design requirements. Selecting a sensor type (e.g., thermography or hyperspectral imaging), sensor platform (e.g., rovers, unmanned aerial vehicles, or satellites), and the problem-specific spatial and temporal scale adds to the challenge as all pathosystems are unique and differ in their interactions and symptoms, or lack thereof. Adding host–pathogen–environment interactions across time and space increases the complexity even further. Large data sets are necessary to enable a deeper understanding of these interactions. Therefore, modern machine learning methods are developed to realize the fast data analysis of such complex data sets. This reduces not only human effort but also enables an objective data perusal. Especially deep learning approaches show a high potential to identify probable cohesive parameters during plant-pathogen-environment interactions. Unfortunately, the performance and reliability of developed methods are often doubted by the potential user. Gaining their trust is thus needed for real field applications. Linking biological causes to machine learning features and a clear communication, even for non-experts of such results, is a crucial task that will bridge the gap between theory and praxis of a newly developed application. Therefore, we suggest a global connection of experts and data as the basis for defining a common and goal-oriented research roadmap. Such high interconnectivity will likely increase the chances of swift, successful progress in research and practice. A coordination within international excellence clusters will be useful to reduce redundancy of research while supporting the creation and progress of complementary research. With this review, we would like to discuss past research, achievements, as well as recurring and new challenges. Having such a retrospect available, we will attempt to reveal future challenges and provide a possible direction elevating the next decade of research in digital plant pathology.