Aims
The ability to distinguish between Klebsiella pneumoniae strains is critical for outbreak investigations. A new typing method, intergenic region polymorphism analysis (IRPA), was developed, validated, and the discriminatory power was determined by comparison with MLVA in this study.
Methods and Results
This method is based on the idea that every IRPA locus (polymorphic fragment of intergenic regions present in one strain but not in other strains or different fragment sizes in other strains) could divide strains into different genotypes. A 9-loci IRPA scheme was designed to type 64 K. pneumoniae isolates. Five IRPA loci were identified that conferred the same level of discrimination as the 9-loci initially examined. Among these K. pneumoniae isolates, 7.81% (5/64), 6.25% (4/64), 4.96% (3/64), 9.38% (6/64), and 1.56% (1/64) were capsular serotypes K1, K2, K5, K20, and K54, respectively. The discriminatory power of the IRPA method was better than that of MLVA expressed in Simpson's index of diversity (SI) at 0.997 and 0.988, respectively. The congruent analysis of the IRPA method and MLVA showed moderate congruence between the two methods (AR = 0.378). The AW indicated that if IRPA data is available one can accurately predict the MLVA cluster.
Conclusion
The IRPA method was found to have higher discriminatory power than MLVA and allowed for simpler band profile interpretation. The IRPA method is a rapid, simple, and high-resolution technique for molecular typing of K. pneumoniae.