The polarization of light provides information that is used by many animals for a number of different visually guided behaviours. Several marine species, such as stomatopod crustaceans and cephalopod molluscs, communicate using visual signals that contain polarized information, content that is often part of a more complex multidimensional visual signal. In this work, we investigate the evolution of polarized signals in species of Haptosquilla, a widespread genus of stomatopod, as well as related protosquillids. We present evidence for a pre-existing bias towards horizontally polarized signal content and demonstrate that the properties of the polarization vision system in these animals increase the signal-to-noise ratio of the signal. Combining these results with the increase in efficacy that polarization provides over intensity and hue in a shallow marine environment, we propose a joint framework for the evolution of the polarized form of these complex signals based on both efficacy-driven (proximate) and content-driven (ultimate) selection pressures.
KEY WORDS: Stomatopod, Mantis shrimp, Polarization vision, Signal evolution, Sensory bias, Multi-modal signal
INTRODUCTIONPolarization sensitivity is a common visual specialization that has evolved in both terrestrial and aquatic animals, and is particularly prevalent in invertebrates (Wehner and Labhart, 2006). On land, many insects use the celestial polarization pattern for navigation (Wehner, 1976;Rossel and Wehner, 1986;Labhart and Meyer, 1999;Dacke et al., 2003), while in the ocean, some crustaceans and cephalopod molluscs use polarization information to detect prey and possibly as a means of conspecific communication (Shashar et al., 1996;Cronin et al., 2003a;Chiou et al., 2007;Mäthger et al., 2009;Cronin et al., 2009;Chiou et al., 2011). In the context of communication, polarization often forms composite signals with other visual dimensions, such as hue and brightness (Cronin et al., 2003a;Cronin et al., 2009).The term polarization is used to define several properties of light. The angle of polarization describes the predominant direction in which the electric field of the light oscillates, while the degree of polarization defines the extent to which waves oscillate at the same angle. Underwater, differential sensitivity to either angle or degree of polarization has several fundamental advantages over other forms of visual information (Cronin et al., 2003a;Cronin et al., 2003b;Cronin et al., 2009;Shashar et al., 2011). For instance, in shallow, clear marine waters, the intensity and spectral composition of the downwelling light can vary dramatically, both as a function of the time of day, and because of environmental factors such as turbidity (Cronin et al., 2014). In such changing conditions, the polarization of light remains more constant than other visual dimensions over short ranges (Waterman, 1954;Cronin, 2001), which renders it a reliable provider of information (Shashar et al., 2011;Johnsen et al., 2011). Previous research in this field has fo...