Fatty acids are essential for feto-placental growth and development. Maternal fatty acids and their metabolites are involved in every stage of pregnancy by supporting cell growth and development, cell signaling, and modulating other critical aspects of structural and functional processes. Early placentation process is critical for placental growth and function. Several fatty acids modulate angiogenesis as observed by increased tube formation and secretion of angiogenic growth factors in first-trimester human placental trophoblasts. Long-chain fatty acids stimulate angiogenesis in these cells via vascular endothelium growth factor (VEGF), angiopoietinlike protein 4 (ANGPTL4), fatty acid-binding proteins (FABPs), or eicosanoids. Inadequate placental angiogenesis and trophoblast invasion of the maternal decidua and uterine spiral arterioles leads to structural and functional deficiency of placenta, which contributes to preeclampsia, pre-term intrauterine growth restriction, and spontaneous abortion and also affects overall fetal growth and development. During the third trimester of pregnancy, placental preferential transport of maternal plasma long-chain polyunsaturated fatty acids is of critical importance for fetal growth and development. Fatty acids cross the placental microvillous and basal membranes by mainly via plasma membrane fatty acid transport system (FAT, FATP, p-FABPpm, & FFARs) and cytoplasmic FABPs. Besides, a member of the major facilitator superfamily-MFSD2a, present in the placenta is involved in the supply of DHA to the fetus. Maternal factors such as diet, obesity, endocrine, inflammation can modulate the expression and activity of the placental fatty acid transport activity and thereby impact fetoplacental growth and development.In this review, we discuss the maternal dietary fatty acids, and placental transport and metabolism, and their roles in placental growth and development.