2010
DOI: 10.1007/s10688-010-0006-1
|View full text |Cite
|
Sign up to set email alerts
|

Double affine Hecke algebra in logarithmic conformal field theory

Abstract: We construct a representation of the double affine Hecke algebra. The symmetrization of this representation coincides with the center of the quantum group U q s (2) and, by KazhdanLusztig duality, with the Verlinde algebra of the (1, p)-model of the logarithmic conformal field theory.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
4
0
2

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(6 citation statements)
references
References 12 publications
0
4
0
2
Order By: Relevance
“…It was shown in [50] that the center Z of U q sℓ(2), as an associative commutative algebra and as an SL(2, Z) representation, is indeed extracted from a representation space of the simplest Cherednik algebra H, defined by the relations T XT = X −1 , T Y −1 T = Y, XY = qY XT 2 , (T − q)(T + q −1 ) = 0 on the generators T , X, Y , and their inverse. In these terms, the P SL(2, Z) action is defined by the elements τ + = 1 1 0 1 and τ − = 1 0 1 1 being realized as the H automorphisms [49] τ + : X → X, Y → q −1/2 XY, T → T, τ − : X → q 1/2 Y X, Y → Y, T → T.…”
Section: 3mentioning
confidence: 92%
See 2 more Smart Citations
“…It was shown in [50] that the center Z of U q sℓ(2), as an associative commutative algebra and as an SL(2, Z) representation, is indeed extracted from a representation space of the simplest Cherednik algebra H, defined by the relations T XT = X −1 , T Y −1 T = Y, XY = qY XT 2 , (T − q)(T + q −1 ) = 0 on the generators T , X, Y , and their inverse. In these terms, the P SL(2, Z) action is defined by the elements τ + = 1 1 0 1 and τ − = 1 0 1 1 being realized as the H automorphisms [49] τ + : X → X, Y → q −1/2 XY, T → T, τ − : X → q 1/2 Y X, Y → Y, T → T.…”
Section: 3mentioning
confidence: 92%
“…It was shown in [50] that the center Z of U q sℓ(2), as an associative commutative algebra and as an SL(2, Z) representation, is indeed extracted from a representation space of the simplest Cherednik algebra H, defined by the relations…”
Section: 3mentioning
confidence: 99%
See 1 more Smart Citation
“…В работе [49] было показано, что центр Z алгебры U q sℓ(2) как ассоциативная коммутативная алгебра и как SL(2, Z)-представление действительно извлекается из пространства представления простейшей алгебры Чередника H, определяемой со-отношениями…”
Section: а м семихатовunclassified
“…Для каждого p 3 авторы работы [49] построили (6p − 4)-мерное (приводи-мое, но неразложимое) представление алгебры H, в котором подпространство с собственным значением оператора T , равным q (как и выше, q = e iπ/p ), являет-ся (3p − 1)-мерным. Структура ассоциативной коммутативной алгебры, индуциро-ванная на этом подпространстве в соответствии с теорией Чередника, совпадает со структурой ассоциативной коммутативной алгебры на центре Z алгебры U q sℓ(2).…”
Section: а м семихатовunclassified