The purpose of this study is to explore the anti-inflammatory role of microRNAs (miR)-21 and miR-23 targeting the TLR/TNF-α pathway in response to chronic intermittent hypoxia with re-oxygenation (IHR) injury in patients with obstructive sleep apnea (OSA). Gene expression levels of the miR-21/23a, and their predicted target genes were assessed in peripheral blood mononuclear cells from 40 treatment-naive severe OSA patients, and 20 matched subjects with primary snoring (PS). Human monocytic THP-1 cell lines were induced to undergo apoptosis under IHR exposures, and transfected with miR-21-5p mimic. Both miR-21-5p and miR-23-3p gene expressions were decreased in OSA patients as compared with that in PS subjects, while TNF-α gene expression was increased. Both miR-21-5p and miR-23-3p gene expressions were negatively correlated with apnea hypopnea index and oxygen desaturation index, while TNF-α gene expression positively correlated with apnea hypopnea index. In vitro IHR treatment resulted in decreased miR-21-5p and miR-23-3p expressions. Apoptosis, cytotoxicity, and gene expressions of their predicted target genes-including TNF-α, ELF2, NFAT5, HIF-2α, IL6, IL6R, EDNRB, and TLR4-were all increased in response to IHR, while all were reversed with miR-21-5p mimic transfection under IHR condition. The findings provide biological insight into mechanisms by which IHR-suppressed miRs protect cell apoptosis via inhibit inflammation, and indicate that over-expression of the miR-21-5p may be a new therapy for OSA.