Thyroid cancer (TC) has become one of most common endocrine malignancies in recent decades. Due to gene background polymorphism, it's outcome goes quite differently in each patient. For exploring the mechanism, we performed whole transcriptome sequencing of paired papillary thyroid carcinoma (PTC) and adjacent thyroid tissues. As a result, scavenger receptor class A member 5 (SCARA5) might be a crucial anti-oncogene associated with PTC. By RT-qPCR, we first detected the expression of SCARA5 in PTC tissue and three type of TC cell lines. Besides, The Cancer Genome Atlas (TCGA) data were gathered to analysis the relationship between SCARA5 and clinical feature. A series of loss-function experiments in TC cell lines (KTC-1 and BCPAP) to investigate the function of SCARA5 in PTC. The results showed that SCARA5 expression in PTC was lower than adjacent normal tissue. And, it's consistent with the TCGA database. After analyse the correlation between SCARA5 expression and clinicopathological features in TCGA database, we discovered that downregulated SCARA5 is significantly connected age (P = .04) and tumour size (P = .032). Knockdown of SCARA5 in TC cell line could significantly increase the function of cells proliferation, colony formation, migration, and invasion. Furthermore, we also proved that SCARA5 could modulate the expression of epithelial-mesenchymal transition-related proteins, which influence invasion and migration. To best of our knowledge, SCARA5 is a suppressor gene which was associated with PTC and might be a potential therapeutic target in the future.Significance of the study: Thyroid cancer (TC) has become one of most common endocrine malignancies in recent decades. By whole transcriptome sequencing of paired papillary thyroid carcinoma (PTC) and adjacent thyroid tissues, author discovered that scavenger receptor class A member 5 (SCARA5) might be crucial antioncogene associated with PTC. Furthermore, knocking-down of SCARA5 in TC cell line can increase the function of cells proliferation, colony formation, migration, and invasion. Author also proved that SCARA5 could modulate the expression of epithelialmesenchymal transition-related proteins.Ru-Tian Hao and Ou-Chen Wang contributed equally to this study.