To study the differences in growth and potassium (K)-use efficiency of two different K-use-efficiency cotton genotypes, a pot experiment was conducted in 2007. Experimental materials include two cotton genotypes (HG103 and LG122) and two K application levels (0 and 0.23 g kg -1 soil). The initial dates of various growth stages, plant heights, numbers of leaves, squares, and bolls, and the amount of litter during the whole growing season were recorded. The distribution and accumulation of dry matter and K content in various organs were measured to compare the differences in K-use efficiency. Significant differences (P < 0.05) between the two genotypes and K levels were found in initial bolling time. At the reproductive growth stage, the plant heights and leaf number of HG103 were less than those of LG122. Greater numbers of squares and bolls were recorded from HG103 than LG122 with K application. Significant differences (P < 0.05) existed in dry matter and K contents in each organ in the two genotypes and K-application levels. The seed cotton yields of HG103 were 3.24 times larger than those of LG122 with K application and 1.77 times larger than those of LG122 with the marginal K treatments. Reproductive-to-vegetative ratios (RVR) and harvest indices (HI) of LG122 were less than those of HG103 whether K was applied or not. The ratios of K in reproductive organs to vegetative organs for LG122 were 0.47 and 0.51 with K application and the marginal treatments, respectively, and for HG103 were 0.66 and 0.75 respectively. The K accumulations in root, stem, and litter of LG122 were more than those of HG103, whereas those in leaves and bolls were less than those of HG103. These results indicated that HG103 transferred more photosynthesis products and K to cotton reproductive organs than LG122.