Original scientific paperIn this study, the seismic behavior of steel-concrete composite buildings designed using ÇYTHYE 2016 and TBDY 2018 was investigated. For this purpose, composite moment resisting frame buildings with concrete filled steel tube columns and composite beams with 5, 10, 15 and 20 stories are modeled. Buildings are designed at high ductility (DCH) levels. During the design of the DCH class structures, the design was carried out for the ZA soil class for 0.79 g PGA in the region selected from the earthquake map given in the regulations. Within the scope of the study, SeismoStruct software was used during the design and performance evaluation of the structures. Incremental dynamic analyzes were used along with nonlinear static pushover analyses. In the static pushover analysis, uniform and triangular load distributions of the lateral load are adopted. In the dynamic analysis, 16 earthquake ground motions were obtained from AFAD earthquake acceleration databases according to the relevant design area and used. The variation of the seismic behavior of CMRFs depending on the variation of the floor number was investigated using nonlinear analysis results. Accordingly, the variation in lateral response, overstrength factors and ductility factors for CMRF structures are presented comparatively. In addition, the section deformation capacities were investigated during the IDR changes during dynamic and static nonlinear analyses. The behavior factor of all CMRFs, especially the CMRFs studied in the case study, demonstrated above-expected performance according to the design assumptions.