ÖzetTitreşim, içten yanmalı motorlu araçlarda konforu etkileyen en önemli faktörlerden birisidir. Doksanlı yıllarda üretilen dizel araçların, benzinli araca göre daha titreşimli çalıştığı bilinmektedir. Son teknoloji dizel araçlarda ise titreşim seviyesi azalmıştır. Bununla birlikte dizel araçların titreşim seviyesi benzinli araçlar seviyesine indirilememiştir. Bu çalışmada; benzinli ve dizel motorların farklı devir sayılarındaki titreşim ölçümleri ivme cinsinden (g) yapılmıştır. Her iki motorun maksimum ve ortalama titreşim değerleri kendi içinde ve karşılıklı olarak kıyaslanmıştır. Bu karşılaştırma sonucunda, ortalama ivme dikkate alındığında, dizel motorun benzinli motora göre rölanti devrinde (1000 dev/ dak) 42.2 kat daha titreşimli çalıştığı tespit edilmiştir. Her devir aralığındaki titreşim oranları değerlendirildiğinde ise iki motorun da maksimum torkun ulaşıldığı devire kadar titreşim oranı azaldığı, bu devirden sonra arttığı tespit edilmiştir.
AbstractVibration is one of the important factors affecting the comfort of vehicles with internal combustion engines. It is known that diesel vehicles produced in the 1990s runs with more vibration than the gasoline engine. On the other hand, the high technology diesel engines produces less vibration. Although there are significant developments in the vibration levels of diesel engines, it is obvious that the vibration level of gasoline engines are better than that of diesel engines. In this study, the vibration level of gasoline and diesel engines are measured as acceleration (g) in their different revolutions. The maximum and average vibration values of these two engines are compared first inside each kind of engine itself and finally with each other. According to this comparison, in terms of average acceleration, the vibration level of the diesel engine is higher (42.2 times) than that of gasoline engine in the idling state (1000 rev/min). In terms of the vibration rates in the range of each revolution for both two engines, it is observed that the vibration rate decreases until the revolution at which the maximum torque is reached, and the vibration rate increases after that revolution.