Gas pressure reduction stations are commonly applied to decrease the pressure of natural gas in the transmission pipelines. In such stations, natural gas is expanded in throttling valves without producing any energy. Through the use of expander in natural gas pressure reduction stations, it is possible to recover the pressure energy of the natural gas during expansion, and drive the electrical generator. Possible solutions include turbines and volumetric expanders. However, turbines are complicated and expensive, while volumetric expanders are simple and cheap. This paper presents an analytical modeling of rolling piston expander work conditions when adopted to natural gas expansion. The main objective of this research was therefore a comprehensive analysis of influence of varied sizes of the expander components and natural gas thermal properties at the inlet and at the outlet of the expander, on the expander output power. The analysis presented in this paper indicates that the rolling piston expander is a good alternative to the turbines proposed for energy recovery in natural gas pressure reduction stations.