The influence of the chain stiffness on the translocation of semiflexible polyelectrolyte through a nanopore is investigated using Langevin dynamics simulations. Results show that the translocation time τ increases with the bending modulus kθ because of the increase of viscous drag forces with kθ. We find that the relation between τ and kθ, the asymptotic behavior of τ on the polyelectrolyte length N, and the scaling relation between τ and the driving force f are dependent on kθ and N. Our simulation results show that the semiflexible polyelectrolyte chain can be regarded as either a flexible polyelectrolyte at small kθ or large N where its radius of gyration RG is larger than the persistence length Lp or a stiff polyelectrolyte at large kθ or short N where RG < Lp. Results also show that the out‐of‐equilibrium effect during the translocation becomes weak with increasing kθ. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 912–921