2020
DOI: 10.2118/0320-0052-jpt
|View full text |Cite
|
Sign up to set email alerts
|

Dynamometer-Card Classification Uses Machine Learning

Abstract: This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 194949, “Beam-Pump Dynamometer Card Classification Using Machine Learning,” by Sayed Ali Sharaf, Tatweer Petroleum; Patrick Bangert, SPE, Algorithmica Technologies; and Mohamed Fardan, Tatweer Petroleum, et al., prepared for the 2019 SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, 18–21 March. The paper has not been peer reviewed. In reciprocating rod pumping systems, analysis of dy… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
4
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(5 citation statements)
references
References 0 publications
0
4
0
1
Order By: Relevance
“…It has been applied in many fields for its fast calculation speed and high prediction accuracy. This method has been used in the petroleum industry for sweet spot searching [36], dynamometer-card classification [37] and water absorption prediction [38].…”
Section: Xgboost Algorithmmentioning
confidence: 99%
“…It has been applied in many fields for its fast calculation speed and high prediction accuracy. This method has been used in the petroleum industry for sweet spot searching [36], dynamometer-card classification [37] and water absorption prediction [38].…”
Section: Xgboost Algorithmmentioning
confidence: 99%
“…Typically, XGBoost relies on the classification and regression tree (CART) as its fundamental learner, which is well-suited to solve classification and regression problems. Owing to its superior performance, XGBoost has been extensively implemented in the petroleum industry, including sweet spot searching (Tang et al, 2021), dynamometer-card classification (Chris, 2020), and water absorption prediction (Liu et al, 2020).…”
Section: Xgboost Algorithmmentioning
confidence: 99%
“…Durante la vida productiva de un pozo los sistemas de levantamiento sufren fallas que son difíciles de determinar, para disminuir la incertidumbre en la determinación de problemas [3], [4] proponen un algoritmo para detectar fallas en los equipos de fondo y optimizar el SLA utilizando ML. Existen diferentes tipos de SLA utilizado en la industria d el petróleo, entre ellos uno de los más utilizados es el bo mb eo mecánico (BM), el cual tiene muchas partes móviles las cuales fácilmente tienden a presentar fallas [5], [6] propone el uso de ML para clasificar las cartas dinamométricas. El uso de los sistemas de bombeo electro sumergibles s on ampliamente utilizados, sin embargo solucionar fallas imp lica levantar todo el ensamblaje de fondo, por lo que [7] propone el uso de ML para predecir y reducir las fallas en el sistema.…”
Section: Introductionunclassified