The extracellular matrix (ECM) exists in various biochemical and structural forms that can act either as a barrier to migrating leukocytes, in the case of basement membranes, or provide a physical scaffold supporting or guiding migration (interstitial matrix). This review focuses on basement membranes and our current knowledge of the way that leukocytes transmigrate this protein barrier, with emphasis on T lymphocytes. Recent data suggest that the classical concept of cell-matrix adhesion requires revision with respect to leukocyte-ECM interactions. Whereas specific receptors may be required for leukocyte recognition of ECM molecules or three-dimensional structural domains, the role of adhesion in migration as perceived from the traditional studies of adherent cell-ECM interactions is less clear. Further, the indirect effects of ECM such as the binding and presentation of cytokines or chemotactic factors may more profoundly influence the directed migration of normally non-adherent leukocytes than the migration of adherent cells such as epithelial cells or fibroblasts. Proteases (in particular matrix metalloproteinases) released at sites of inflammation can selectively process ECM, cell surface molecules or soluble factors, which may result in the release of bioactive fragments that can function as chemoattractants for different leukocyte subsets or may modulate the activity/function of resident mesenchymal and immune cells. Current findings suggest that different leukocyte types employ different mechanisms to migrate across or through the ECM; this might be determined by the composition and organization of the ECM itself.