“…The most notable features of the critical slowing down are a slower rate of recovery from perturbations ( Wissel, 1984 ), as well as a persistent increase in variance, autocorrelation (AC), and cross-correlation among different elements of the system (also called spatial correlation in ecology; Scheffer et al, 2009 ). Early warning signals (EWSs) have been developed to capture these dynamic changes, usually reflecting B-tipping scenarios indicating bifurcation of the system ( Ashwin, 1999 ; Ashwin et al, 2012 ; Perryman and Wieczorek, 2014 ), and have been widely used to study critical transitions in diverse systems, including ecosystems ( Wouters et al, 2015 ; Pedersen et al, 2017 ; Xu et al, 2023 ), financial markets ( Diks et al, 2019 ; Tu et al, 2020 ; Ismail et al, 2022 ), and climate systems ( Dakos et al, 2008 ; Dylewsky et al, 2023 ). Application to clinical contexts is also gaining a growing interest, with applications in tumor detection ( Xu et al, 2022 ; Zhong et al, 2022 ; Huang et al, 2023 ), detection of emerging infectious diseases ( Chen P. et al, 2019 ; Brett et al, 2020 ; Li et al, 2022 ; Proverbio et al, 2022 ), mental disorders ( van de Leemput et al, 2014 ; Bayani et al, 2017 ; Bos et al, 2022 ), sepsis ( Tambuyzer et al, 2014 ; Almeida and Nabney, 2016 ; Ghalati et al, 2019 ), environmental health ( Wang et al, 2018 ), alcohol use disorders ( Foo et al, 2017 ), epileptic seizures ( Maturana et al, 2020 ; Karasmanoglou et al, 2023 ), intestinal health ( Lahti et al, 2014 ), and chronic diseases ( Venegas et al, 2005 ; Li et al, 2014 ; Liu et al, 2021 ; Cohen et al, 2022 ).…”