2020
DOI: 10.1016/j.bspc.2020.101989
|View full text |Cite
|
Sign up to set email alerts
|

EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
40
0
2

Year Published

2020
2020
2022
2022

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 111 publications
(42 citation statements)
references
References 21 publications
0
40
0
2
Order By: Relevance
“…Conversely, other SI based optimisers explored for DL include the salp-swarm optimiser [64], harmony search optimiser on variational stacked autoencoders [65], whale optimisation algorithm(WOA) using bidirectional RNN [66], the Artificial Bee Colony (ABC) for optimizing hyperparameters for LSTM models [67], the AC-Parametric WOA (ACP-WOA) [68] for predicting biomedical images, symbiotic organisms search (SOS) algorithm [69], lion swarm optimiser(LSO) [70], and many others. Nevertheless, a comparison of the performance of these genetic algorithms shows that the GWO convergence rate is fastest compared to the Genetic Algorithm (GA), and PSO [71]. However, there is no holistic comparison of the performance of these SI optimisers found in the literature.…”
Section: Particle Swarm Optimisers (Pso)mentioning
confidence: 99%
“…Conversely, other SI based optimisers explored for DL include the salp-swarm optimiser [64], harmony search optimiser on variational stacked autoencoders [65], whale optimisation algorithm(WOA) using bidirectional RNN [66], the Artificial Bee Colony (ABC) for optimizing hyperparameters for LSTM models [67], the AC-Parametric WOA (ACP-WOA) [68] for predicting biomedical images, symbiotic organisms search (SOS) algorithm [69], lion swarm optimiser(LSO) [70], and many others. Nevertheless, a comparison of the performance of these genetic algorithms shows that the GWO convergence rate is fastest compared to the Genetic Algorithm (GA), and PSO [71]. However, there is no holistic comparison of the performance of these SI optimisers found in the literature.…”
Section: Particle Swarm Optimisers (Pso)mentioning
confidence: 99%
“…Although implanted electrodes inside the human brain (invasive approach) show more effectiveness in recognizing the state of the brain [5][6][7], it has a hazardous risk of serious contagious gangrene and lethal death tolling outcomes. Therefore, researchers are more focused on noninvasive methods for EEG measurement [8] and gradually application spectrum of the EEG signal is increasing with recent including of mental workload estimation through EEG, brain-machine-based multi-target cursor movement, detection of emotions, and many more [9][10][11].…”
Section: Introductionmentioning
confidence: 99%
“…Beyindeki bilişsel aktiviteler sonucu oluşan değişimleri algılama hassasiyetinin yüksek olması nedeniyle, EEG sinyalleri zihinsel iş yükü değerlendirmelerinde sıklıkla kullanılan bir yöntemdir [13][14]. Zihinsel iş yükü seviyelerinin çok seviyeli sınıflandırılması üzerine çeşitli çalışmalar yürütülmüştür [15][16][17][18][19]. Wang ve arkadaşları [15], dört spesifik EEG alt bandı için hesapladıkları, entropi, sinyal gücü, morfolojik ve istatistiksel öznitelikleri içeren 658 öznitelikten oluşan öznitelik vektörünü kullanarak, mRMR tabanlı öznitelik seçimi ve destek vektör makineleri tabanlı sınıflandırma sonucu %84 sınıflandırma doğruluğuna erişmişlerdir.…”
Section: Gi̇ri̇ş (Introduction)unclassified
“…Hızlı Fourier Dönüşümü ile alt bantlarına ayrıştırılmış EEG sinyallerinin her alt bant için güç spektral yoğunluklarını öznitelik olarak kullanarak, düşük, orta ve yüksek zihinsel iş yükünü %69 doğrulukla belirlemişlerdir. Chakladar ve arkadaşları [19]…”
Section: Gi̇ri̇ş (Introduction)unclassified