The influence of different iron carbides on the activity and selectivity of iron-based Fischer−Tropsch catalysts has been studied. Different iron carbide phases are obtained by the pretreatment of a binary Fe/SiO 2 model catalyst (prepared by coprecipitation method) to different gas atmospheres (syngas, CO, or H 2 ). The phase structures, compositions, and particle sizes of the catalysts are characterized systematically by XRD, XAFS, MES, and TEM. It is found that in the syngas-treated catalyst only χ-Fe 5 C 2 carbide is formed. In the CO-treated catalyst, Fe 7 C 3 and χ-Fe 5 C 2 with a bimodal particle size distribution are formed, while the H 2 -treated catalyst exhibits the bimodal size distributed ε-Fe 2 C and χ-Fe 5 C 2 after a Fischer−Tropsch synthesis (FTS) reaction. The intrinsic FTS activity is calculated and assigned to each corresponding iron carbide based on the phase composition and the particle size. It is identified that Fe 7 C 3 has the highest intrinsic activity (TOF = 4.59 × 10 −2 s −1 ) among the three candidate carbides (ε-Fe 2 C, Fe 7 C 3 , and χ-Fe 5 C 2 ) in typical medium-temperature Fischer−Tropsch (MTFT) conditions (260−300 °C, 2−3 MPa, and H 2 /CO = 2). Moreover, FTS over ε-Fe 2 C leads to the lowest methane selectivity.