A new approach to thermal decomposition of organic iron precursors is reported, which results in a simpler and more economical method to produce well crystallized γ-Fe2O3 nanoparticles (NPs) with average sizes within the 3-17 nm range. The NPs were characterized by TEM, SAED, XRD, DLS-QELS, Mössbauer spectroscopy at different temperatures, FT-IR and magnetic measurements. The obtained γ-Fe2O3 NPs are coated with oleic acid and, in a lower quantity, with oleylamine (about 1.5 nm in thickness). It was shown that changing operative variables allows us to tune the average particle diameters and obtain a very narrow or monodisperse distribution of sizes. The γ-Fe2O3 NPs behave superparamagnetically at room temperature and their magnetization saturation is reduced by about 34% in comparison with bulk maghemite. The results indicate that the distance between two neighbour NPs, generated by the coating, of about 3 nm is insufficient to inhibit interparticle magnetic interactions when the average diameter is 8.8 nm. The good quality of the NPs, obtained through the present low-cost and easy-handling process, open a new perspective for future technological applications.
Pectins (Pec) of 33 to 74 % esterification degree were tested with doxorubicin (Dox), a very high toxic drug widely used in cancer therapies. Pec with 35 and 55 % DE were selected because of the Dox binding higher than Pec microspheres of 35 and 55 % obtained by ionotropic gelation with Ca⁺² have 88 and 66 % Dox loading capacity. Kinetic Dox release showed more than 80.0 and about 30.0 % free drug from 35 % and 55 % Pec formulations at pH 7.4, and 37 °C after 1-h incubation, respectively. Besides, Dox release decrease to 12 % in 55 % Pec microsphere formulation after 1-year storage at 4 °C. FTIR analysis of Pec-Dox complex showed hipsochromic shifts for the σ(C=O), δ(N-H) and σ(C-C) vibrational modes compared to Dox spectrum suggesting strong interaction between the drug cargo and the matrix. Rheological studies of Pec and Pec-Dox samples flow behavior exhibited a shear-thinning nature. Fifty-five percent of Pec showed higher viscosity than the viscosity for 35 % Pec in all range of temperatures analyzed, and decreased when the temperature is raised. Besides, Pec-Dox complexes have higher viscosity values than those of the corresponding Pec samples, and viscosity curves as function of shear rate for 35 % Pec-Dox are above the curves of 55 % Pec-Dox. In both cases, the results are confirming significant interaction between the cargo and the matrix, which also was established in viscoelastic dynamic analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.