The surface functionalization of radio frequency magnetron-sputtered zinc oxide (ZnO) thin films tailored by low-pressure Ar/NH mixture surface-wave plasmas (SWPs) is discussed based on the results of photoluminescence (PL), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and spectrophotometric measurements. At an Ar/NH gas mixture ratio of 70%/30%, both the PL intensity of the near-band-edge emission and the XRD intensity of the ZnO(002) reflection peak were enhanced by about 5.5 and 8 times, respectively, compared to the values for the as-grown sample. Furthermore, the XPS and spectrophotometric analyses using the fluorescent dye showed that the amine group functionalization over the surface of the ZnO films reached their maximum values at the same gas ratio. From the results of optical emission spectroscopic and ion mass spectrometric measurements in the Ar/NH mixture SWPs, it is inferred that the nitrogen-containing reactive species, such as NH ( x = 1-4) ions and NH ( y = 1, 2) molecules in addition to H radicals might crucially interact with the defective ZnO surface lattices to repair the ZnO thin films from compressive to strain-free crystallized structures, enhance the PL intensity, and produce the amine group surface functionalization.