A simple model was proposed for description of Cooper pair breaking effect (which is caused by transfer of spin-polarized carriers from the ferromagnetic (FM) manganite into the high temperature superconductor (HTS)) on the critical temperature and the microwave surface impedance of HTS/FM heterostructures. The model is based on the assumption on an exponential dependence of the Cooper pairs concentration (as well as number of the holes in CuO2 planes, responsible for the superconductivity) on the distance from HTS/FM interface. The model fits well the thickness dependence of HTS film parameters and is used for evaluation of the penetration depth of spin-polarized particles into HTS in the HTS/FM structures.