Objective: To review briefly the influence of dietary long-chain polyunsaturated fatty acids (LC-PUFA) on tissue composition and functionality in early infancy. Moreover, the influences of LC-PUFA sources on plasma composition as well as the effects of these fatty acids on intestinal repair after malnutrition are discussed. Results: Human milk not only supplies essential fatty acids but also contains up to 2% of the total fatty acids as LC-PUFA, of which arachidonic acid (AA) and docosahexaenoic acid (DHA) are considered the most important. Plasma and erythrocyte levels of both AA and DHA are decreased in infants fed artificial standard milk formulae. However, the supplementation of formulae with these fatty acids in amounts close to that of human milk leads to tissue LC-PUFA patterns similar to those of breast-fed infants. However, the bioavailability of LC-PUFA depends on the typical LC-PUFA source; egg phospholipids increases both AA and DHA in plasma phospholipids and HDL more than a mixture of tuna and fungal triglycerides. Conclusions: Dietary LC-PUFA affects positively the growth and development of the infant and ameliorates the visual and cognitive functions, particularly in preterm infants. Likewise, LC-PUFA improves intestinal repair in severe protein-energy malnutrition; therefore, its qualitative and quantitative dietary supply should be considered.