The geographic distribution of life on Earth supports a general pattern of increase in biodiversity with increasing temperature. However, some previous analyses of the 540-million-year Phanerozoic fossil record found a contrary relationship, with paleodiversity declining when the planet warms. These contradictory findings are hard to reconcile theoretically. We analyze marine invertebrate biodiversity patterns for the Phanerozoic Eon while controlling for sampling effort. This control appears to reverse the temporal association between temperature and biodiversity, such that taxonomic richness increases, not decreases, with temperature. Increasing temperatures also predict extinction and origination rates, alongside other abiotic and biotic predictor variables. These results undermine previous reports of a negative biodiversity-temperature relationship through time, which we attribute to paleontological sampling biases. Our findings suggest a convergence of global scale macroevolutionary and macroecological patterns for the biodiversity-temperature relationship.climate change | Court Jester | mass extinction | Red Queen | rock record B eyond small geographical scales, biodiversity consistently decreases with latitude (1-3), reflecting a strong, probably causal, association between warmer climates and standing richness in both the terrestrial, water availability permitting (4), and marine realms (5, 6). Our understanding of the association between biodiversity and warm climates in space contrasts strongly with our models of how climate explains global diversity through time (7). One analysis of compendia of fossil taxa suggests that biodiversity declines with increasing global temperatures (8), but the focus on temperature as the driver, without reference to other variables, has drawn criticism (7). Analyses at smaller scales (geographic, temporal, or taxonomic) are equivocal (9). How can it be that warm temperatures should apparently have negative effects on biodiversity through time while also having positive effects across space (10) (i.e., contrasting macroevolutionary and macroecological patterns)? Recently, however, our understanding of past changes in biodiversity has been transformed by the application of techniques to control for sampling bias in paleodiversity data (11). Here we apply more-robust measures of fossil diversity, origination, and extinction through time to reevaluate the role of temperature in the context of other potential environmental drivers.Much effort to understand macroevolutionary changes through the Phanerozoic has focused on marine invertebrates, first through Sepkoski's genus-level compendium (12) and latterly via the Paleobiology Database Project (PaleoDB) (11). Putative factors proposed to drive temporal fluctuation in biodiversity include biotic drivers, such as competition between taxa (13, 14) and predation intensity (15). Alternatively, abiotic variables such as sea level change (16,17), nutrient inputs and shelf redox conditions (17, 18), plate tectonic events (19), volcan...